Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
WebChemistry Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
ValidatorDB:Principles
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=Validation analyses= The validation analyses performed by ValidatorDB cover all main issues which have been observed in the topology (2D structure) and geometry (3D structure) of ligands and non-standard residues. These validation analyses, along with their respective results, can be classified into three categories, namely ''Completeness'', ''Chirality'' and ''Advanced'' analyses. The ''Completeness'' analyses attempt to find which atoms are missing, whether these atoms are part of rings, or the structure is degenerate, i.e., the molecule contains very severe errors. These may refer to residues overlapping in the 3D space, or atoms which are disconnected from the rest of the structure. The ''Chirality'' analyses are performed only on complete structures, and aim to evaluate the chirality of each atom in the validated molecule. We distinguish between several types of chirality errors: on carbon atoms (C chirality), on metal atoms (Metal chirality), on atoms with 4 substituents in one plane (Planar chirality), on atoms connected to at least one substituent by a bond of higher order (High order chirality), and the remaining chirality issues (Other chirality). The ''Advanced'' analyses are focused on issues which are not real chemical problems, but which can complicate further processing and exploration of data, and thus should be noted. The Substitution analysis reports the replacement of some atom by an atom of a different chemical element. The Foreign atom analysis detects atoms which originate from the neighborhood of the validated molecule (i.e., having different PDB residue ID than the majority of the validated molecule), and generally marks sites of inter-molecular linkage. The Different naming analysis identifies atoms whose name in PDB format is different than the standard convention for the validated molecule. The Zero RMSD analysis reports molecules whose structure is identical (root mean square deviation = 0 Å) to the model from wwPDB CCD. The Alternate conformations analysis informs about the occurrence of alternate conformations in the validated PDB entry.
Summary:
Please note that all contributions to WebChemistry Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
WebChemistry Wiki:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
ValidatorDB:Principles
(section)
Add topic